
Security as a CoAP resource:
an optimized DTLS implementation for the IoT

Angelo Capossele∗ §, Valerio Cervo∗, Gianluca De Cicco∗ and Chiara Petrioli∗ §
∗Computer Science Department, University of Rome “La Sapienza”

§WSENSE S.r.l.
Rome, Italy

Email: {capossele, cervo, decicco, petrioli}@di.uniroma1.it

Abstract—The growing number of applications based on Inter-
net of Things (IoT) technologies is pushing towards standardized
protocol stacks for machine-to-machine (M2M) communication
and the adoption of standard-based security solutions, such
as the Datagram Transport Layer Security (DTLS). Despite
the huge diffusion of DTLS, there is a lack of optimized
implementations tailored to resource constrained devices. High
energy consumption and long delays of current implementations
limit their effective usage in real-life deployments. The aim of
this paper is to explain how to integrate the DTLS protocol inside
the Constrained Application Protocol (CoAP), exploiting Elliptic
Curve Cryptography (ECC) optimizations and minimizing ROM
occupancy. We have implemented our solution on an off-the-shelf
mote platform and evaluated its performance. Results show that
our ECC optimizations outperform priors scalar multiplication in
state of the art for class 1 mote platforms, and improve network
lifetime by a factor of up to 6.5 with respect to a standard-based
not optimized implementation.

I. INTRODUCTION

Given the widespread use of Internet of Things (IoT) tech-
nologies, Wireless Sensor Networks (WSNs) are likely to in-
teract and exchange information with objects outside their own
internal network. This interoperability requirement is pushing
to migrate from proprietary protocol stacks to open and
standardized solutions, leveraging on the use of IPv6 through
the Low power Wireless Personal Area Network (6LoWPAN)
and IEEE 802.15.4 protocols [1], [2]. This architecture enables
sensor nodes to be directly addressed and seen as producers of
information consumed by users on the Internet or by users in
the IoT which opportunistically query the WSN. The nature of
the WSN channel makes the data vulnerable to being modified,
injected and eavesdropped. Therefore, security is often an
important requirement, especially in application scenarios such
as military, health-care or even home automation [3].

In order to find the right balance among security, energy-
efficiency and interoperability, several works have investigated
optimizations for Elliptic Curve Cryptography (ECC) [4] to
address the design of a standardized security architecture
suitable for embedded devices such as WSNs [5]–[7] or even
Underwater Acoustic Sensor Networks (UASN) [8]. In [9]–
[11], authors describe a solution based on the Transport Layer
Security (TLS) protocol [12], which is extended to support
ECC [13] to make it viable in a WSN environment. From a se-
curity and interoperability perspective, the flexibility provided
by the TLS protocol is very appealing for IoT systems, because

of its capability to support the negotiation of the cryptographic
key and the symmetric cipher suites for message authentication
and data encryption.

At the same time, the Constrained Application Protocol
(CoAP) [14] is under standardization as an application layer
protocol for the IoT. CoAP proposes to use Datagram Trans-
port Layer Security (DTLS) [15], the UDP-based version
of TLS, to provide end-to-end security. DTLS was initially
designed for traditional networks. Therefore, porting the pro-
tocol as it is over resource constrained devices produces a
heavyweight solution. DTLS headers are also too long to fit
in a single IEEE 802.15.4 maximum transmission unit (MTU).
Authors in [16], [17] have presented preliminary ideas on how
to overcome these problems, highlighting the need to minimize
communication overhead. To achieve this objective Raza et
al. [18], [19] have proposed to adopt 6LoWPAN header
compression for DTLS. They have linked compressed DTLS
with the 6LoWPAN standard, achieving a 62% reduction in
the number of additional security bits. Following the same
approach, Kothmayr et al. [20], [21] have presented a security
scheme based on RSA. Their implementation of DTLS is
presented in the context of a system architecture achieving
low overhead and high interoperability on a hardware platform
suitable for IoT. However, computational overhead of their
DTLS handshake introduces a high energy consumption due
to the use of RSA-based cryptography. Other works [22],
[23] have evaluated the performance of DTLS handshake for
resource constrained environments using ECC-based cryptog-
raphy, whose adoption is also proposed by the CoAP stan-
dard [14]. Their results still show high energy consumption.

Our contribution: The aim of this paper is to develop a fully
optimized implementation of DTLS for CoAP, by combining
existing and novel optimizations, minimizing computation and
communication overhead. Our specific contributions are the
following.

• We present the architecture of DTLS over CoAP, where
security associations are created as CoAP resources,
exploiting block wise transfer and message reordering
provided by CoAP to minimize communication overhead
and ROM occupation.

• We demonstrate the viability of our design by implement-
ing it on an off-the-shelf mote platform. The implemen-
tation exploits several state of the art optimizations for



DTLS as well as techniques to speed up computation of
ECC-based operations.

• We experimentally assess the performance of our imple-
mentation in terms of energy consumption and overhead,
showing that proposed optimizations can significantly
improve overall performance.

The paper is organized as follows. In the next section we
provide necessary background on CoAP and DTLS. Section III
describes the architecture of our solution, detailing technical
optimizations in Section IV. In Section V we evaluate per-
formance of our DTLS implementation. Finally, Section VI
concludes the paper.

II. COAP AND DTLS

A. CoAP

The IETF Constrained Application Protocol (CoAP) [14]
is an application layer protocol tailored to resource con-
strained devices and M2M applications. It allows commu-
nication over the Internet among IoT objects that support
UDP and 6lowPAN, achieving low overhead and support-
ing multicast. CoAP is an optimized implementation of the
RESTful1 specification [24], where a well-known URI spec-
ifies an entry point for requesting the resources hosted by
a server. Similarly to the HTTP protocol, a typical URI
can be: “coap://ipv6host:port/resource” CoAP architecture is
divided into two layers: the lower message layer and the upper
request/response layer. The message layer provides reliability
and sequencing by means of a stop and wait protocol using
the following types of messages: confirmable which requires
an acknowledgment message as response, non-confirmable
which does not require a response, and reset which is used
in case a confirmable message cannot be processed. The
request/response layer manages the mapping between requests
and responses and their semantic. This layer offers basic re-
quest methods to provide a RESTful architecture: GET, PUT,
POST and DELETE. The GET method retrieves information
regarding the resource specified by the URI. PUT and POST
methods both create or modify a target resource, with the
difference that the former has the idempotent property. The
DELETE method requests to delete a specified resource. Each
request is associated to a response, which is identified by a
code field in the CoAP header2. Figure 1 shows a simple CoAP
interaction between a client and a temperature sensor acting
as a server.

B. DTLS

The Datagram Transport Layer Security (DTLS) [15], is
the UDP-based version of TLS, designed to provide end-to-
end security association between pairs. It permits to flexibly
negotiate security services and cryptographic mechanisms,
selecting a specific cipher suite. An example of cipher suite is:
TLS ECDH ECDSA WITH AES 128 CCM 8, which describes

1Representational state transfer (REST) is an abstraction of the architecture
of the World Wide Web.

2See RFC 7252 for further details [14]

Client Server

CON GET /temp
(coap://fe80:::03:5893)

ACK, 2.05 Content
Body: 23

http://msc-generator.sourceforge.net v3.6.1

Fig. 1. Simple CoAP interaction.

Client Server
Client Hello

Server's public key
signed by CA
using ECDSAServer Hello

Certificate
Server Key Exchange

Server Hello Done

Verify server's
certificate, extract
server public key

Certificate
Client Key Exchange
Change Cipher Spec

Finished

Client's public key
signed by CA
using ECDSA,

and generation of
session key

Generation of
session keyChange Cipher Spec

Finished

Encrypted Application Data

http://msc-generator.sourceforge.net v3.6.1

Fig. 2. DTLS key agreement with Fixed Diffie Hellman over Elliptic Curves.

the fixed Elliptic Curve Diffie-Hellman (ECDH) key agreement
where a certificate contains the ECDH-capable public key
signed by the Certification Authority with the Elliptic Curve
Digital Signature Algorithm (ECDSA) [4]. Figure 2 shows an
instance of the DTLS handshake protocol.

The client starts the DTLS handshake sending to the server
a Client Hello message, containing the supported cipher
suites (e.g., TLS ECDHE ECDSA WITH AES 128 CCM 8 ).
The server commits the decision of which cryptographic
algorithms to use by sending as response a Server Hello
message. The handshake then proceeds with an exchange of
information, such as Certificates and Key Exchanges, required
to establish a common secret, from which per-session keys
are derived. A 1B long message, ChangeCipherSpec, then
informs the other party to switch to authenticated/encrypted
mode using the negotiated algorithms. Finally, the negotiation
process ends verifying the previous messages exchanged with
the Finished message, which contains a message authentication
code (MAC) computed based on all the previous sent and
received handshake messages as seen by each peer. The
subsequent exchanged data are encrypted under the specified
symmetric encryption algorithm (e.g., AES128 [25]) using the
session key.

CoAP proposes to use DTLS protocol to provide
end-to-end security, requiring the support of NoSec
mode when DTLS is disabled, and RawPublicKey



mode with TLS ECDH ECDSA WITH AES 128 CCM 8
when an asymmetric key pair is present. Additonal
not-mandatory options are PreSharedKey mode
with TLS PSK WITH AES 128 CCM 8 if a pre-
shared key is available, or the cipher suite
TLS ECDHE PSK WITH AES 128 CBC SHA if both
PreSharedKey and RawPublicKey methods are supported. A
secured resource is thus requested using: “coaps://”, otherwise
“coap://” if NoSec mode is employed.

III. DTLS AS A COAP RESOURCE

Since DTLS was initially designed to protect web applica-
tion communication, an implementation as is results in heavy
overhead in IoT scenarios, where sensor platforms have limited
computational capabilities and internal (RAM/ROM) mem-
ory. Moreover, the complexity of DTLS implementation is
increased by the fact that using it on top of the UDP protocol,
requires to provide mechanisms to guarantee reliability and
ordering of messages. To design a version of DTLS tailored
to resource constrained devices, it is important to minimize
both code size and amount of messages exchanged, resulting
in an optimized handshake protocol. As also suggested in [17],
we exploit CoAP capabilities to provide connection oriented
communication offered by its message layer. More specif-
ically, Confirmable messages require an Acknowledgement
message as response, thus providing a reliable transmission. In
addition, fragmentation can be performed relying on the block-
wise transfer feature defined by CoAP, developed to support
transmission of large payloads. The combination of both
mechanisms allows to guarantee that DTLS is compliant to the
standard but lighter. We develop RESTful DTLS connection as
a CoAP resource, which is created when a new secure session
is requested. This on one side allows large reuse of CoAP
functionalities and code, and on the other side provides CoAP
with the abilities to optimize use of resources, including what
needed for security associations.

Denial of service (DoS) attacks are a critical aspect which
needs to be addressed. Resources on the server can be con-
sumed by an attacker initiating a series of handshake requests,
resulting in possible expensive operations or flooding of large
messages, such as certificates. In order to mitigate this attack,
we used the stateless cookie technique presented in [26],
where clients are forced to retransmit the Client Hello with
the appended cookie. The server, based on the validation of
the cookie, can continue the handshake.

Figure 3 shows how the handshake works using CoAP,
where communication reliability is provided by CON and
ACK messages which contain the DTLS handshake mes-
sages as payload. An IoT object acting as a client can
request a secure connection to a server object using the URI
“coaps://ipv6host:port/dtls” with the PUT method containing the
Client Hello message as payload. As a result, a new DTLS
session is created on the server and it can be updated using
the POST method. The followings HelloVerifyRequest and
Client Hello sent respectively by the server and the client,
mitigate the DoS attack discussed above. Then, according to

Client Server

CON PUT uri/dtls
Client Hello

ACK 2.01 Created uri/session/1234abcd, CON
Hello Verify Request

ACK, CON POST /uri/session/1234abcd
Client Hello

ACK 2.04 Changed, CON
Server Hello
Certificate

Server Key Exchange
Server Hello Done

ACK, CON POST /session/1234abcd
Certificate

Client Key Exchange
Change Cipher Spec

Finished

ACK 2.04 Changed, CON
Change Cipher Spec

Finished

ACK

Encrypted Application Data

http://msc-generator.sourceforge.net v3.6.1

Fig. 3. DTLS key agreement over CoAP with Raw Public Key.

the negotiated cipher suite, they exchange information needed
to establish a common secret and derive a session key. Note
that, based on the cipher suite, messages of this phase can be
quite large (e.g., certificate). Our DTLS implementation leaves
all the fragmentation tasks to CoAP, through its efficient block-
wise transfer. Finally, after both client and server have received
the Finished message, handshake is concluded and the secure
session is established.

Since the resources available on a sensor node are clearly
limited, devices can close a DTLS connection, thus freeing
RAM space. However, considering that DTLS handshakes
are by far the most expensive task of the DTLS protocol,
frequently closing and re-establishing connections is very
inefficient. Therefore, sensor nodes should keep the security
association up for as long as possible. For this reason, if
the memory available on a sensor node is unable to store
parameters for all the security associations, we adopt a caching
strategy to store on the flash memory the set of security
associations that are frequently used.

IV. IMPLEMENTATION AND OPTIMIZATIONS

To demonstrate the viability of our solution, we have
implemented it on the MagoNode [27], a mote platform that
has been designed by our spin-off Wsense.3 The MagoNode
features an 8bit ultra low power 16MHz microcontroller, the
Atmel’s Atmega128RFA1 (RFA1), with an integrated low-
power transceiver 802.15.4. Thanks to the 2.4Ghz RF front-

3http://www.wsense.it



end, the MagoNode platform is able to communicate over
long-distances still keeping very high energy efficiency. It is
equipped with 16KB of RAM and 128KB of ROM, which
is enough to store TinyOS stack which includes 6LoWPAN,
RPL, UDP, CoAP and our DTLS implementation. We used
TinyOS 2.x [28] as the operating system and we developed
our solution in nesC.

From a performance perspective, implementing a cryp-
tographic library on resource constrained devices is very
challenging. Motes are usually equipped with simple and
cheap microcontrollers, few KB dozens of ROM and just 10-
16KB of RAM. Performing heavy cryptographic operations
typically requires long execution times, impairing communi-
cation delay and energy consumption performance. It is crucial
to implement efficiently these operations, optimizing them
at the lowest level, in order to achieve good performance
while providing an acceptable security level. The following
subsections describe how we have optimized implementation
of basic operations on which many security protocols such as
ECDH, ECDSA rely upon.

A. Modular Arithmetic on Large Integer

Large integers on devices with 8bit registers are imple-
mented using arrays. When operations such as multiplication
and squaring are used, which require a large amount of
memory accesses to store results, an efficient use of registers is
needed. We developed assembly code routines based on [29],
specifically optimized for the MagoNode platform, which
allow an improved use of registers, thus reducing the number
of memory operations.

B. ECC

We developed our ECC library based on a combination of
TinyECC4 and Relic5 libraries, implementing the elliptic curve
as a MNT curve, which can be described in the simplified
Weierstrass form as

E(Fp) : y
2 = x3 + ax+ b. (1)

The elliptic curve E is defined over a prime field Fp where
p = 2160−231−1 according to SECG [30] recommendations.
This curve provides a security level of 80 bits. In addition,
our group size p is a pseudo Mersenne prime, therefore we
can speed up modular multiplication and squaring by adopting
curve-specific optimizations. Moreover, the elliptic curve E
can be converted from affine coordinates to Jacobian ones as
follows:

E(Fp) : Y
2 = X3 + aXZ4 + bZ6. (2)

where X = xZ2, Y = yZ3. Adding a third element to
represent a point (X,Y, Z), allows to separately calculate the
numerator and the denominator during computational costly
operations such as the modular inversion. As a result, we can
further reduce the execution time to perform such operations.

4http://discovery.csc.ncsu.edu/software/TinyECC/
5http://code.google.com/p/relic-toolkit

Let G ∈ Gq be a generator of a cyclic subgroup of
order q. The elliptic curve scalar multiplication P = kG
is defined as the addition of the point G along the curve
E repeated k times. The problem of finding k, given P
and G is called the elliptic curve discrete logarithm problem
(ECDLP), whose hardness is the fundamental assumption of
the security of various cryptographic protocols, such as the
Elliptic Curve Diffie-Hellman (ECDH) and the Elliptic Curve
Digital Signature Algorithm (ECDSA). Scalar multiplication
is often the most expensive operation in EC based cryptog-
raphy, therefore optimizing it can drastically improve overall
performance of the specific cryptographic protocol. In order
to speed up the computation of scalar multiplication, we used
the technique proposed in [6], hereafter referred to as IBPV.
Roughly speaking, it randomly generates a number n of ki
elements of order q, precomputes Pi = Gki for all i ∈ n
and stores in a table all the pairs (ki, Pi). When we need to
perform a scalar multiplication such as R = Gr, where r is
a random element of order q, IBPV randomly selects l out of
the n precomputed pairs, computes r =

∑
ki and R =

∑
Pi

for all i ∈ l terms respectively, obtaining the corresponding
R = Gr. We exploit IBPV to improve performance of ECDSA
signature, moreover we extend it to the ECDH protocol. We
also used the Shamir trick [4] which allows to perform the
sum of two scalar multiplications faster than performing two
independent scalar multiplications, thus reducing the execution
time of the ECDSA signature verification.

V. PERFORMANCE EVALUATION

To evaluate the impact of our optimized implementation
of DTLS, we assess the computational overhead of its most
frequently used operations, defined in terms of the time needed
to perform such operations. We also considered the energy
impact of performing our DTLS handshake with different
cipher suites. Furthermore, to highlight benefits of designing
the DTLS as a CoAP resource (hereafter referred as DTLS
over CoAP), we compared our solution with the standard
implementation of DTLS in terms of RAM and ROM occu-
pancy. Since there was not an available implementation of
DTLS for TinyOS, we have also implemented the standard
version, exploiting some parts of TinyDTLS, a Contiki [31]
version of DTLS. Table I shows RAM and ROM occupancy of
CoAP and Blip protocols, which are the stack implementation
composed of the 802.15.4 MAC layer, RPL (RFC 6550) as
routing protocol, 6LoWPAN, UDP and CoAP. The whole stack
occupancy is respectively about 41% and 40% of the RAM
and ROM available on the MagoNode platform. Table I shows
also the comparison of the amount of resources required by the
standard implementation of DTLS with respect to DTLS over
CoAP. Results show that leaving reliability and fragmentation
tasks to CoAP, and implementig DTLS as a CoAP resource,
ROM occupancy of DTLS can be reduced by almost 23% with
respect to the standard implementation of DTLS which is also
more expensive in terms of RAM resources, as it requires an
extra 236B overhead.



Table II shows the computational overhead and energy cost
of the EC scalar multiplication over the MagoNode mote,
which we recall to be the most expensive operation performed
by cryptographic protocols during the DTLS handshake. We
separately display performance results obtained by enabling
the different optimizations as this allows to understand the im-
pact on performance of each introduced optimization. Perfor-
mance are measured in terms of overhead and ROM consump-
tion. Base identifies the implementation without optimizations.
Assembly introduces low-level routines for modular arithmetic
on large integer, curv. opt. adds to base Mersenne specific
elliptic curve optimization, proj. coord. enhances base with the
use of Jacobian coordinates to represent a point on the curve.
All refers to the case where all optimizations, except IBPV are
enabled. All + IBPV enables also the IBPV generator. The base
version is basically composed of the ECC library providing
modular arithmetic for large integers and for points on elliptic
curves. Its ROM occupation is about 7KB, and we used it as
the benchmark to show the extra overhead introduced by each
optimization. Enabling all as optimization level, performance
of scalar multiplication improves by a factor of almost 14 with
respect to base, at the cost of an extra 4.9KB of ROM. This is
an additional 70% of the ROM with respect to what needed by
the ECC library. By adding another 13.6% of code, we enable
all + IBPV which allows to reduce the execution time and
the corresponding energy consumption by a factor of 100, the
most performing solution in state of the art for class 1 mote
platforms [6].

Table III explains the impact of our optimizations from
a cryptographic protocols perspective, showing the execution
time and the energy consumption needed to perform a digital
signature and a signature verification using ECDSA and an
instance of the ECDH protocol. Results compare base, all
and all + IBPV settings. Performing a signature, using all
improves performance by a factor of 13 while all + IBPV
improves performance by a factor of almost 91. For the
signature verification, enabling IBPV does not introduce any
improvement with respect to all setting because the operations
involved do not require any scalar multiplication in the form
Gr where r is a large integer randomly chosen. Thus the
main optimization involved is the Shamir trick, which allows
to reduce execution time and energy cost by a factor of
25. Finally, ECDH is improved by a factor of 13.8 and 24
respectively with all and all + IBPV setting.

In Figure 4 we show the energy impact, in terms of
mote lifetime, of establishing several DTLS sessions per
hour, comparing our proposed solution with the standard
implementation of DTLS (e.g. not optimized). For this
experiment, we used a mote acting as a server and
several motes acting as a client. Each mote (MagoNode
platform) was equipped with two alkaline AA 1.5 V
batteries. Since the most energy costly operations during
an handshake are ECC operations, we compare the energy
consumption adopting two different cipher suites based
on ECC: TLS ECDH ECDSA WITH AES 128 CCM 8 and
TLS ECDHE PSK WITH AES 128 CBC SHA. The former

Protocol ROM RAM
CoAP + Blip 51410 B 6653 B

standard DTLS 10983 B 7380 B
DTLS over CoAP 8936 B 7144 B

TABLE I
ROM & RAM OCCUPANCY OF OUR DTLS OVER COAP IMPLEMENTATION

Scalar Multiplication
Optimization Time Energy ROM

base 13487 ms 190.17 mJ /
assembly 13057 ms 184.1 mJ 2318 B
curve opt. 12591 ms 177.53 mJ 578 B

proj. coord. 3896 ms 54.93 mJ 1994 B
all 976 ms 13.76 mJ 4890 B

all + IBPV 135 ms 1.9 mJ 5852 B

TABLE II
COMPUTATIONAL OVERHEAD, ENERGY CONSUMPTION AND ROM

OCCUPANCY ON MAGONODE PLATFORM.

is based on the fixed ECDH key agreement where a
certificate contains the ECDH-capable public key signed
by the Certification Authority with ECDSA. Therefore
the main operations involved are scalar multiplication
and signature verification. In the latter, public keys are
ephemerals, so peers authentication is not provided. Cipher
suites are implemented both in their standard version (e.g. not
optimized) and in their optimized version. Results show that
significant lifetime improvements are obtained when using our
optimizations. Lifetime improves by a factor ranging from 2.8
to 6.5 using TLS ECDH ECDSA WITH AES 128 CCM 8
and by a factor ranging from 2 to 4.4 using
TLS ECDHE PSK WITH AES 128 CBC SHA .

VI. CONCLUSION

We have presented the architecture of our implementation
of DTLS over CoAP, where security associations are created
as CoAP resources, exploiting reliability and the block wise
transfer provided by CoAP. Our implementation exploits spe-
cific optimizations, from a low level (e.g., assembly routines)
up to a protocol level, thus minimizing computation overhead
and ROM occupation. The implementation and feasibility of
the proposed solution has been assessed through experiments
on our MagoNode platform, showing that our optimizations
allows to achieve the most performing scalar multiplication in
state of the art for class 1 mote platforms. Moreover, we have
detailed each implemented optimization showing advantages
and disadvantages of enabling them, in terms of computational
overhead and ROM occupation. Experimental results show

base (ms/mJ) all (ms/mJ) all + IBPV (ms/mJ)
ECDSA sign 13635 / 192.25 1045 / 14.73 150 / 2.11

ECDSA verify 27476 / 387.41 1076 / 15.17 1076 / 15.17
ECDH 26974 / 380.33 1952 / 27.52 1111 / 15,67

TABLE III
COMPUTATIONAL OVERHEAD AND ENERGY CONSUMPTION OF ECDSA

AND ECDH PROTOCOLS FOR DIFFERENT OPTIMIZATIONS ON MAGONODE
PLATFORM.



Fig. 4. Lifetime of MagoNode platform depending on the number of DTLS
opened sessions per hour.

that network lifetime improves by a factor of up to 6.5 using
our solution with respect to a standard-based not optimized
implementation.

ACKNOWLEDGMENT

This paper has been partially supported by the PRIN project
TENACE and by the National Technological Cluster project
CTN001 0034 23154 Social Museum and Smart Tourism,
funded by the Italian MIUR.

REFERENCES

[1] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6
over Low-Power Wireless Personal Area Networks (6LoWPANs):
Overview, Assumptions, Problem Statement, and Goals,” Network
Working Group RFC 4919, August 2007. [Online]. Available:
http://tools.ietf.org/html/rfc4919

[2] “Approved Draft Amendment to IEEE Standard for Information
technology-Telecommunications and information exchange between
systems-PART 15.4:Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs): Amendment to add alternate PHY (Amendment
of IEEE Std 802.15.4),” IEEE Approved Std P802.15.4a/D7, Jan 2007,
pp. –, 2007.

[3] S. Gerdes and O. Bergmann, “Security Requirements for Managing
Smart Objects in Home Automation,” in Mobile Networks and Man-
agement. Springer Berlin Heidelberg, 2013, vol. 58, pp. 231–243.

[4] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2003.

[5] G. Bianchi, A. T. Capossele, C. Petrioli, and D. Spenza, “AGREE:
exploiting energy harvesting to support data-centric access control in
WSNs,” Ad hoc networks, vol. 11, no. 8, pp. 2625–2636, 2013.

[6] G. Ateniese, G. Bianchi, A. T. Capossele, and C. Petrioli, “Low-
cost Standard Signatures in Wireless Sensor Networks: A Case for
Reviving Pre-computation Techniques?” in Proceedings of the 20th
Annual Network & Distributed System Security Symposium, NDSS’13,
San Diego, CA, USA, 2013.

[7] L. Marin, A. Jara, and A. S. Gomez, “Shifting primes: Optimizing ellip-
tic curve cryptography for 16-bit devices without hardware multiplier,”
Mathematical and Computer Modelling, vol. 58, no. 56, pp. 1155 –
1174, 2013.

[8] G. Ateniese, A. T. Capossele, P. Gjanci, C. Petrioli, and D. Spaccini,
“SecFUN: Security Framework for Underwater acoustic sensor Net-
works,” in Proceedings of OCEANS - Genova, 2015 MTS/IEEE, May
2015, pp. 1–9.

[9] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
and S. C. Shantz, “Sizzle: a standards-based end-to-end security archi-
tecture for the embedded internet,” Sun Microsystems, Inc., Technical
Reports, SERIES 13103, Tech. Rep., 2005.

[10] S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifi, “Tiny 3-TLS:
A Trust Delegation Protocol for Wireless Sensor Networks,” Springer
LNCS, Security and Privacy in Ad-Hoc and Sensor Networks, pp. 32–42,
March 2007.

[11] G. Bianchi, A. T. Capossele, A. Mei, and C. Petrioli, “Flexible Key
Exchange Negotiation for Wireless Sensor Networks,” in Proceedings
of the fifth ACM international workshop on Wireless network testbeds,
experimental evaluation and characterization, ser. WiNTECH ’10.
Chicago, Illinois, USA: ACM, 2010, pp. 55–62.

[12] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol, Version 1.2,” IETF RFC, vol. 5246, August 2008.

[13] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller,
“Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS),” IETF RFC, vol. 4492, May 2006.

[14] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” IETF RFC 7252, June 2014. [Online]. Available:
http://tools.ietf.org/html/rfc7252

[15] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,”
IETF RFC, vol. 4347, April 2006.

[16] K. Hartke, “Practical Issues with Datagram Transport Layer
Security in Constrained Environments draft-hartke-dice-practical-
issues-01,” DICE Internet-Draft, April 2014. [Online]. Available:
http://tools.ietf.org/html/draft-hartke-dice-practical-issues-01

[17] S. Keoh, S. Kumar, and Z. Shelby, “Profiling of DTLS for CoAP-based
IoT Applications draft-keoh-dice-dtls-profile-iot-00,” Internet-Draft,
November 2013. [Online]. Available: http://tools.ietf.org/html/draft-
keoh-dice-dtls-profile-iot-00

[18] S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN Compressed DTLS for
CoAP,” in Proceedings of the IEEE DCOSS 2012. IEEE, pp. 287–289.

[19] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure CoAP for the Internet of Things,” Sensors Journal,
IEEE, vol. 13, no. 10, pp. 3711–3720, Oct 2013.

[20] T. Kothmayr, “A Security Architecture for Wireless Sensor Networks
based on DTLS,” Master’s thesis, Universitat Augsburg, December 2011.

[21] T. Kothmayr, C. Schmitt, W. Hu, M. Brnig, and G. Carle, “DTLS based
security and two-way authentication for the Internet of Things,” Elsevier,
Ad Hoc Networks, vol. 11, no. 8, pp. 2710 – 2723, 2013.

[22] J. Granjal, E. Monteiro, and J. Silva, “On the effectiveness of end-
to-end security for internet-integrated sensing applications,” in Green
Computing and Communications (GreenCom), 2012 IEEE International
Conference on, Nov 2012, pp. 87–93.

[23] J. Granjal, E. Monteiro, and J. Sa Silva, “End-to-end transport-layer
security for internet-integrated sensing applications with mutual and del-
egated ECC public-key authentication,” in IFIP Networking Conference,
2013, May 2013, pp. 1–9.

[24] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Trans. Internet Technol., vol. 2, no. 2, pp. 115–150,
May 2002.

[25] N. FIPS, “197: Announcing the Advanced Encryption Standard (AES),”
Information Technology Laboratory, National Institute of Standards and
Technology, vol. 5 (4), November 2001.

[26] P. Karn and W. Simpson, “Photuris: Session-Key Management
Protocol,” Network Working Group RFC 2522, March 1999. [Online].
Available: http://tools.ietf.org/html/rfc2522

[27] U. M. Colesanti, A. Lo Russo, M. Paoli, C. Petrioli, and A. Vitaletti,
“Introducing the magonode platform,” in Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’13.
New York, NY, USA: ACM, 2013, pp. 79:1–79:2.

[28] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos: An oper-
ating system for sensor networks,” in Ambient Intelligence, W. Weber,
J. Rabaey, and E. Aarts, Eds. Springer Berlin Heidelberg, 2005, pp.
115–148.

[29] N. Gura, A. Patel, A. W, H. Eberle, and S. C. Shantz, “Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs,” in Proceedings
of the 6th International Workshop on Cryptographic Hardware and
Embedded Systems, Boston, Massachusetts, USA, August 2004, pp.
119–132.

[30] SECG, “SEC 2: Recommended Elliptic Curve Domain Parameters
version 2.0.”

[31] A. Dunkels, B. Grnvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on, Nov
2004, pp. 455–462.


