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Abstract—Sensor mission assignment concerns matching the
sensing resources of a wireless sensor network (WSN) to ap-
propriate tasks (missions), which may come to the network
dynamically. Although solutions for WSNs with battery-operated
nodes have been proposed for this problem, no attention has
been given to networks whose nodes have energy harvesting
capabilities, which impose quite a different energy model. In this
paper we address this problem by providing both an analytical
model and a distributed heuristic, called EN-MASSE, for energy
harvesting WSNs. The objective of both model and EN-MASSE
is to maximize the profit of the network, fully exploiting the
harvesting technologies, while ensuring the execution of the
most critical missions within a given target WSN lifetime. The
performance of EN-MASSE is evaluated by simulations based on
real solar energy traces. Our experiments show that EN-MASSE
behaves very closely to the optimum provided by our model and
significantly outperforms previously proposed solutions.

I. INTRODUCTION

Field and environmental monitoring are very common ap-

plications of wireless sensor networks (WSNs). In a typical

scenario, the nodes of a WSN are placed in a region for col-

lecting accurate measurements about some phenomenon. The

number of active nodes in the network (i.e., those currently

performing their sensing and communication tasks) determines

the accuracy of the collected data and the number of tasks that

can be complete successfully. There exists a tradeoff between

the accuracy and number of tasks that may be performed, and

the longevity of the network. Since WSNs are usually intended

to last for long periods of time, the number of active nodes

should be carefully managed.

Recent works [1] have addressed selective activation of

nodes, i.e., sensing tasks are allocated only to a group of sensor

nodes over time, allowing the other nodes in the network to

go to sleep and save energy. In many applications, however,

the application may require the network to achieve multiple,

simultaneous missions, potentially competing for the sensing

resources of the nodes. By mission, we refer to a sensing

task whose primary goal is the collection of information, to

which one or multiple sensors may contribute. For example,

the network might be required to perform multiple, concurrent

localization and intrusion detection tasks using directional

acoustic sensors that can be assigned to only one mission at

time [2]. In this case, a sensor selection scheme is no longer

sufficient, because it is necessary to decide not only which

nodes in the network must be active, but also which active

sensors should be assigned to which mission. This is a non

trivial task, because a given node may offer support to different

missions with different levels of accuracy and fit. Missions, on

the other hand, may vary in importance (profit) and amount

of resources they require (demand). They may also appear in

the network at any time and may have different durations. A

mission is executed if enough sensors are assigned to it, based

on its demand. In this scenario, the goal of a sensor-missions

assignment algorithm is thus to assign available nodes to

appropriate missions, maximizing the profit received by the

network for mission execution.

Different constraints in assignment decision lead to different

versions of this problem, depending on whether missions

can be assigned to sensors dynamically [2]–[4] or they are

known a priori [3]–[5] and on whether the network has a

predefined target operational lifetime [4] or must last as long

as possible [3]. Some prior solutions are energy aware, in

the sense that they take into account nodal residual energy

to decide mission assignments. In doing so, however, they

make the specific assumption that energy is monotonically

decreasing, as is typical with a battery, and therefore residual

energy is the only criterion for assigning missions.

More recently, sensor nodes are being developed that,

along traditional batteries, mount devices such as energy

harvesters and supercapacitors, which draw new energy from

the environment surrounding a node and store it, respectively.

For these nodes, new paradigms for mission assignments are

needed, which take into account that nodes currently having

little or no energy left might have enough in the future to carry

out new missions.

In this paper we are concerned with the practical case

of WSNs that run applications requiring the network to be

operational for a given amount of time (dynamic assignment

with a time horizon, as in [4]). We study this case with sensor

nodes that have energy harvesting capabilities. We refer to

the given amount of time the network is expecting to be

operational, i.e., accepting and completing missions, as the

target lifetime of the network.

We aim at making the following contributions:

1) We model the problem of optimum mission assignment in

energy harvesting WSNs. Our formulation captures the details

of the behavior of a typical energy harvesting subsystem,

selects which missions to execute and the nodes that should

execute them so that the profit throughout the network opera-

tional lifetime is maximized. At the same time, the schedule



provided by our formulation ensures that the required energy

is always available, independently of its source (battery or

harvesting).

2) We provide the first ENergy harvesting-aware sensor-

Mission ASSignmEnt distributed algorithm (denoted EN-

MASSE). In order to decide whether to bid for a given

mission or not, an EN-MASSE node exploits not only the

nodal residual energy, but also takes into account the energy

that is expected to be harvested in the future (based on a

harvester-based energy prediction model) and the expected

profit and demand of missions to come. Since our approach

is general, EN-MASSE may be combined with any energy

prediction model.

3) We provide a simulation based performance evaluation

framework for energy harvesting WSNs. In our experiments,

we use traces of the availability of solar energy that we ob-

tained by interfacing TelosB nodes with solar cells, collecting

data for 100 days.

4) We perform a comparative performance evaluation of

EN-MASSE, the schemes proposed by Johnson et al. in [4],

as well as the optimum mission allocation computed by our an-

alytical model. We evaluate the impact of critical parameters,

such as the target lifetime, the types of sensors embedded in

the nodes (and their energy consumption), the supercapacitor

size and the mission arrival rate, on the performance of the

different schemes in twenty distinct scenarios. Our results

show that the profit earned by EN-MASSE is close to the

optimum. EN-MASSE is also able to significantly outperform

previous schemes in terms of profit, of efficient usage of

the harvested energy and of the capability to support critical

missions over time.

The remainder of this paper is organized as follows. Related

work is presented in Section II. In Section III we formulate the

mission assignment problem for energy harvesting WSNs and

provide an analytical model that maximizes network profit.

EN-MASSE is then presented in Section IV and compared to

previous solutions and the optimum derived by the model in

Section V. Finally, we present our conclusions in Section VI.

II. RELATED WORK

A. Sensor-mission assignment problem

Mission assignment in WSNs has received considerable

attention. Bar-Noy et al. introduced the Semi-Matching with

Demands (SMD) in [5]. This approach is based on different

priorities and demands of each mission and on additive utility

values for each sensor-mission pair. In the original SMD

profits are awarded only if a certain utility threshold is met

and the problem is defined only for a set of missions known

a priori. SMD was extended in [3], incorporating both a profit

threshold in case of partial mission satisfaction and mission

dynamics. The authors propose centralized and distributed

approaches for maximizing the network profit by satisfying

all missions available at a given time. They also provide an

energy-aware assignment scheme for prolonging the network

lifetime. However, the case in which the network operates for

a finite target lifetime is not considered.

A variation of the sensor-mission assignment problem,

motivated by frugality and conservation of resources, was

addressed by Johnson et al. in [4]. The authors show that

finding an optimal solution to the dynamic sensor-mission

assignment problem is NP-hard. They then propose a heuristic

where the assignment decisions depend on the sensors energy,

exposing a trade-off between network lifetime and achievable

profit. Rather than satisfying all missions available at a given

time, this scheme allows the nodes to autonomously decide the

missions in which they will participate based on their residual

energy.

Other related problems with different assignment constraints

have been studied. For example, in [6], Le et al. consider

missions than can be decomposed into a set of specific tasks

and solve the sub-problem of sensor-task assignment, allowing

sensors to be shared and reassigned between mission subtasks.

B. Power management in energy harvesting networks

Despite significant research effort, energy continues to

remain a severe bottleneck for applications where battery-

powered systems are expected to operate for long periods

of time. For this reason there has been a growing interest in

the design of systems that are able to draw energy from the

environment, with the main goal of supplementing or even

replacing batteries (energy harvesters) [7]–[10]. Due to the

great variability of environmental energy sources and to their

unpredictable nature, harvesting-aware power management

policies are required for network performance and lifetime

enhancement. Many works have addressed the possibility of

achieving near perpetual network lifetime by operating in

energy-neutral mode, i.e., by consuming only as much energy

as harvested [11], [12].

Other works have tackled the problem of task scheduling

for energy harvesting WSNs [13]–[15]. For example, in [15],

Steck and Rosing presented two algorithms to balance the

tradeoff between task utility and energy constraints in these

networks, guaranteeing energy neutrality.

Our approach differs from these works in two ways. First,

our primary goal is to maximize the network profit within a

given time horizon, rather than enabling the network to operate

perennially. We thus do not require energy neutrality. Second,

we focus on the problem of assigning nodes in the network

to competitive missions, instead of scheduling local tasks of

nodes.

III. ENERGY HARVESTING ARCHITECTURE AND

ANALYTICAL MODEL

Each node in the network is equipped with an energy

harvesting subsystem, which includes one or more photo-

voltaic panels1 and a supercapacitor that acts as energy buffer

for the node . Nodes are also equipped with a non-rechargeable

primary battery of capacity PB, whose purpose is to guarantee

a minimum lifetime in case no or little energy can be drawn

from the environment.

1Although we focus here on solar-based harvesters, our approach is general
and can be applied to other energy sources as well.



An actual supercapacitor deviates from an ideal energy

buffer in many ways. First of all, it has a finite size BMax and

therefore can hold a finite amount of energy. Second, it suffers

from leakage and self-discharge, through which energy is lost

even if the supercapacitor is not in use. Finally, it has a charg-

ing efficiency ηc < 1 and a discharging efficiency ηd < 1,

i.e., some energy is lost while charging and discharging the

supercapacitor.

The leakage experienced by a charged supercapacitor is

a complex function, that increases when the energy stored

is higher [7], [16]. To capture this behavior, we model the

leakage, leaki(t), experienced by the energy buffer, Bi, of

the sensor node Ni at time t by using a piecewise linear

approximation of the empirical leakage pattern, as in [16]:

leaki(t) =







a1 ·Bi(t) + b1, BR1
≤ Bi(t) < BR2

· ·· ·
an ·Bi(t) + bn, BRn

≤ Bi(t) < BRn+1

where BR1
, . . . , BRn+1

are the residual energy values in

which the slope of the leakage curve change significantly

and a1, . . . , an, b1, . . . , bn are constants depending on the

supercapacitor used, that represent the coefficients of the line

segments used for the approximation.

The mission assignment problem for wireless sensor net-

works equipped with such an energy harvesting subsystem

is then mathematically formulated as follows. The network

consists of a set of energy-harvesting endowed sensor nodes

N1, . . . , Nn, pre-deployed in a field. At any time, a mission

may appear in the network at a specific geographic location.

Let M1, . . . ,Mm be the set of missions that the network is

asked to perform.

A mission Mj is a tuple (pj , dj , li, tsi, tei) where:

pj is the profit of the mission, indicating both its im-

portance and the reward achieved by the network for

its execution;

dj is the mission demand, indicating the amount of

sensing resources it needs;

li is the geographic location of the mission in the field;

tsi is the time the mission arrives in the network;

tei is the time the mission terminates.

Missions usually last for multiple units of time, i.e., tej >
tsj ; pj , dj , lj are constant over time during mission execution.

In order for a mission to be executed, one or more sensor

nodes must be assigned to it. We define eij as the utility

received by mission Mj if node Ni is assigned to it. This

utility value is zero if the node cannot contribute to a mission,

which happens, for instance, if the mission location and the

node position are not close enough. Different values of eij can

be used to indicate the “quality of contribution” that a sensor

can provide to a particular mission.

While missions can be performed by multiple sensors, we

assume that a node can be assigned to at most one mission at

a time (xij = 1). We also assume that the total utility received

by a mission uj is equal to the sum of the utilities provided

by the sensors assigned to it, i.e., uj =
∑

xijeij .

The total utility that a mission Mj requires is expressed by

its demand dj . If the total utility uj received by a mission is

lower than its requested demand dj , we say that the mission

Mj is partially satisfied and we indicate its satisfaction level

with yj = uj/dj (in the range [0, 1]). Profits are received by

the network for mission execution, based on the satisfaction

level of the mission. In this formulation of the mission

assignment problem, profits can be awarded fractionally, but

only if a minimum satisfaction threshold Tsat is met.

More formally, the profit associated with satisfying mission

Mj at time t depends on the satisfaction level yjt of the

mission at time t, as follows:

pjt(yjt) =







pj , if yjt ≥ 1
pj · yjt, if Tsat ≤ yjt < 1
0 if yjt < Tsat

Since missions usually last for multiple units of time, the

total profit received for achieving mission Mj is the sum of

the profits earned over the entire mission lifetime, i.e., pj =
∑tej

t=tsj
pjt(yjt).

When a node is assigned to a mission, it spends a certain

amount of energy per unit time, sc to accomplish the sensing

activity required by the mission. When a sensor is not assigned

to any mission, its power consumption is equal to the idle

energy consumption, ic. Thus, the energy consumption ECi(t)
of the sensor node Ni at time t is:

ECi(t) =







0, if the node is dead

sc, if ∃Mj ∈ M s.t. xijt = 1
ic, if ∀Mj ∈ M,xijt = 0

where we consider a node dead at time t, and thus set its

energy consumption to zero, if it has not enough energy to

stay in idle mode.

The amount of energy a node obtains from the harvesting

subsystem is modeled taking into account features of realistic

energy buffers. We consider two different cases, based on the

amount of energy harvested at a certain time t, the current

energy consumption and the energy level of the supercapacitor:

1) If the current energy consumption is greater than (or

equal to) the energy currently harvested, then the node can

directly use the harvested energy to (partially) fulfill its power

requirements. This is the most efficient way of using the

environmental energy, because there is no energy loss due to

buffer inefficiency and leakage. 2) Otherwise, some energy

is directly used to sustain the node’s operation, while excess

energy is stored in the supercapacitor for later use.

Because both the charging and discharging efficiency of

the buffer are strictly less than one, only a fraction ηcηd of

the excess energy is available after storing (and retrieving)

it. Furthermore, because of the finite size of the buffer, some

energy may be wasted if there is not enough space left in the

supercapacitor to store it. More formally, the energy obtained

from the harvesting subsystem, EHij(t), and directly used by

the sensor node Ni at time t is:

EHi(t) =

{

ESi(t), if ESi(t) ≤ ECi(t)
ECi(t), if ESi(t) > ECi(t)



where ESi(t) is the energy harvested through the solar panel

by the node Ni at time t.
The energy provided or stored by the supercapacitor at time

t is instead:

EBi(t) =

{

ηd(ECi(t)− ESi(t)), if ESi(t) ≤ ECi(t)
ηc(ESi(t)− ECi(t)), if ESi(t) > ECi(t)

In the first case, the supercapacitor provides enough en-

ergy to sustain the current consumption of the node and

is discharged with a discharging efficiency equal to ηd. In

the second case, excess energy generated by the harvesting

subsystem is stored in the supercapacitor for later use with a

charging efficiency of ηc.

The difference ∆Bi(t) in the supercapacitor energy between

time t and t+ 1 can then be computed as:

∆Bi(t) =















































EBi(t), if ESi(t) > ECi(t) and

EBi(t) ≤ BMax
i −Bi(t)

BMax
i −Bi(t), if ESi(t) > ECi(t) and

EBi(t) > BMax
i −Bi(t)

−EBi(t), if ESi(t) ≤ ECi(t) and

EBi(t) ≤ Bi(t)
−Bi(t), if ESi(t) ≤ ECi(t) and

EBi(t) > Bi(t)

The energy stored in the supercapacitor at time t+1, Bi(t+
1) is finally given by: Bi(t+1) = Bi(t)+∆Bi(t)− leaki(t).
Sensor-mission assignment problem. Ideally, we seek an

assignment of sensors to missions that satisfies each mission’s

demand. However, satisfying all missions may not be feasible,

thus our goal is to maximize the total profit obtained by

the network over a given target lifetime. The sensor-mission

assignment problem in energy harvesting WSNs is modeled

as follows:

max
∑Tl

t

∑m

j=1
pj(yjt) (1)

s.t.
∑n

i=1
xijteij ≥ djyjt, ∀Mj , t (2)

∑m

j=1
xijt ≤ 1, ∀Ni, t (3)

∑

t′≤t ECi(t
′) ≤ PBi+

∑

t′≤t(EHi(t
′) +Bi(t

′)) ∀Ni, t (4)

xijt ∈ {0, 1}, ∀xijt (5)

yjt ∈ [0, 1], ∀yjt (6)

Bi(0) = 0, ∀Ni (7)

where t varies between 0 and the network target lifetime Tl.

There are two sets of decision variables: yjt indicating the

satisfaction level of the mission Mj at time t and xijt, denoting

if sensor Ni is assigned or not to mission Mj at time t. We

seek an assignment of sensors to missions that maximizes the

total profit obtained by the network over a given target lifetime

Tl (1). The satisfaction level yjt of the mission Mj at time

t depends on the utility received by the mission with respect

to its demand (2). A node may be assigned to at most one

mission at a time (3). For each sensor node Ni and for each

time instant t, we ask that the total energy consumed by Ni in

the first t slots is always equal or less than the energy initially

stored in its primary battery2, plus the sum of the harvested

energy directly used and the harvested energy obtained through

the supercapacitor within the same interval of t slots. Using

this condition, and having accurately modeled the harvesting

subsystem behavior, we assure that the energy constraints are

not violated at any instant of time. Finally, nodes can not be

fractionally assigned to a mission (5), the satisfaction level of

a mission is in the range [0, 1] (6) and the supercapacitor is

initially empty (7).

IV. EN-MASSE

Each mission appears in the network at a specific geographic

location li. In EN-MASSE the sensor node closest to li is

selected as the mission leader and coordinates the process of

assigning nodes to the mission. Nodes in the neighborhood

of the mission decide autonomously whether to bid for the

execution of the incoming mission or to ignore it, based on a

proposal (or bidding) scheme. They then communicate their

possible availability to the mission leader, which greedily

selects which of the available sensor nodes to assign to the

mission, based on their offered contribution, until either the

mission is fully satisfied or all nodes which have bid for it have

been assigned to the mission.3 We selected the communication

protocol described in [3], [4] for exchanging information

between the mission leader and the nearby nodes.

The EN-MASSE bidding scheme is specific for sensor-

mission assignment in networks with energy harvesting ca-

pabilities. Each time a sensor becomes aware of a mission, it

considers several factors in order to decide whether to propose

for its execution or not, including: 1) the current energy level

of the node battery and capacitor; 2) the energy cost of the

mission; 3) the future energy availability, obtained through a

solar energy prediction model; 4) the profit of the mission

with respect to the maximum profit; 5) the utility offered by

the node with respect to the mission demand, and 6) the target

lifetime of the network.

The first three factors in the list, namely the current energy

level of the battery and the supercapacitor, the energy cost

of the mission and the expected future energy available,

are used by the node to classify the incoming mission into

one of the following four classifications: Free missions are

those arriving when the node super-capacitor is full; their

energy cost is expected to be fully sustained by the energy

harvested during their duration. The information on the energy

that will be harvested in the near future is provided by the

energy prediction model. Recoverable missions are those

whose energy cost can be sustained using the energy stored

in the supercapacitor. Such energy cost can be recovered

through harvesting in a small period of time, according to the

prediction of future energy availability. Capacitor-sustainable

missions occur if the total energy cost of the mission can be

2The size of the battery must be chosen as to guarantee a node being idle
all the time to reach at least the target lifetime, even if the energy source is
unavailable over the whole period.

3Sensor nodes are actually allocated to missions only if such missions can
be satisfied.



sustained using only the supercapacitor but this cost is not

expected to be recovered through harvesting in the near future.

Battery-required mission are those whose energy cost must

be totally or partially supplied by the battery.

The classification assigned to the mission does not depend

on its profit and demand, but is based on the battery and

capacitor energy level, and the node prediction about future

energy availability. The same mission can thus be classified in

a different way by different nodes.4 This classification is used

by the node to decide whether to bid for a mission or not.

Nodes always accept free missions. The energy needed

by such missions can be directly provided by the harvesting

subsystem without using any energy from the supercapacitor or

the battery. This is particularly energy efficient since we avoid

energy losses due to supercapacitor inefficiency and leakage.

Moreover, in this situation there is no reason for saving energy.

Because the capacitor is full, any excess energy harvested from

the environment would be wasted if not used.

If the incoming mission is recoverable or capacitor-

sustainable, the node evaluates how profitable the mission is,

based on the profit of the mission with respect to the maximum

profit and the utility offered by the node with respect to

the mission demand. In more detail, a sensor compares the

partial profit it can obtain by participating in that mission with

the expected partial profit p of a typical mission, which is

computed based on the distribution of the missions profit and

demand and the expected utility contribution that a node can

offer to a typical mission in its range:

p =
E[u]

E[d]
×

E[p]

P
,

where E[u] is the expected utility contribution, E[d] and E[p] 5

are the expected demand and the expected profit of a typical

mission, and P is the maximum mission profit.

The partial profit achievable by participating in the incoming

mission p∗ is defined as:

p∗ =
u

d
×

p

P
× wm, (8)

where u is the potential utility contribution that the node can

provide to the given mission, d and p are, respectively, the

mission demand and profit, P is the maximum mission profit

and wm is the weight associated to the mission’s classification

(higher for recoverable missions, thus giving a higher chance

to those missions to be accepted over capacitor sustained

missions). The value p∗ is then compared to p, to have an

indication of how profitable the mission is. A node will bid

for a given mission only if p∗ ≥ p.

Battery required missions are those with the lowest weight-

ing factor. In fact, we want the network to be able to reach

a given target lifetime, so we choose to use precious battery

4The type of the mission can change during its execution (e.g. a recoverable
mission can become a sustainable mission if the energy prediction was too
optimistic). However, mission classification is used for resource allocation
during the bidding phase: if mission classification changes later on this has
no effect on node allocation to missions.

5All these values are learnt by the nodes based on previous history.

energy only to execute missions with higher relative profits. If

the mission is battery-required the node separately evaluates

the energy contribution provided by the supercapacitor and

the battery. If the capacitor is not empty, its p∗ is computed

as in the capacitor-sustainable case and then weighted with

the fraction of the requested energy that should be actually

provided by the supercapacitor. The same approach is taken

to compute the partial profit p∗ associated to the battery

contribution. However in this latter case we use an additional

factor to compute p∗, defined as follows:

we =
ea
er

,

where ea is the amount of energy available at the node, i.e.,

its current battery level, and er is the amount of energy the

node deems to be necessary to reach a given target lifetime.

Let te be the expected occupancy time, i.e., the fraction of

time the node expects to be serving missions in the future.

This value is computed based on estimates of the mission

arrival rate, the expected mission duration, the probability that

a given mission is within the node’s sensing range and the

probability that a sensors offer is accepted 6. We denote with

τ the remaining target lifetime, i.e, the difference between the

initial target network lifetime and the current time. We can

then express er as: er = τ × te × sc.
The factor we is then multiplied for wm in the computation

of p∗. The objective of we is to tune the eagerness of sensors

to participate in new missions. It forces nodes to be more

conservative in accepting missions as the energy they have gets

low compared to what is expected to be needed to reach the

target lifetime. On the other hand, it also makes the nodes act

more aggressively as the target network lifetime approaches.

Since the harvested energy is renewable, and suffers from

leakage, there is no point in conserving the energy stored in the

capacitor for long periods of time. This is why this criterion,

which may appear valid in general, is adopted only to battery-

operated missions.

V. PERFORMANCE EVALUATION

In this section we evaluate our sensor-mission assignment

scheme EN-MASSE in several different scenarios and com-

pare its performance with the performance of other schemes

proposed in the literature.

A. Energy harvesting model

Our C++ simulator uses real-life solar data we collected

using Telos B motes [17] interfaced with XOB17-04x3 solar

cells [18]. The motes were deployed in a residential area in

Rome for a total of 100 non-consecutive days at variable

weather conditions and in different locations. A dedicated

TinyOS application was developed to track the amount of

6The latter parameter, dubbed γ, is difficult to compute due to a feedback
effect: to decide whether a node should bid for a mission we need to know
the probability that a bidding is accepted. The approach we have taken has
been to experimentally tune the parameter γ so that profit performance of the
selected scheme are maximized.



energy generated by the cell every 30 seconds. Due to differ-

ent weather conditions, seasonal patterns, node position and

solar cell orientation, the amount of energy harvested varied

significantly over time (as low as 3J per solar cell in case of

cloudy and rainy days and up to 220J during sunny days).

EN-MASSE uses an energy prediction model to estimate the

amount of energy a node will receive from the ambient source,

in order to classify incoming missions, e.g., by predicting the

time necessary for the node to recover through harvesting the

energy requested by a mission The solar data we recorded,

beyond being used as traces for our simulations, allowed us

to verify the accuracy of different energy prediction models

proposed in the literature, namely the Exponential Weighted

Moving Average [11] and the Weather-Conditioned Moving

(WCMA) [19] estimation methods. Based on such assessment,

we decided to use for EN-MASSE the WCMA energy pre-

diction model, which estimates the energy generation on a

typical day based on the energy availability at the same time

on the previous days and on the current and past-day weather

conditions. This approach in especially effective in case of

frequently changing weather conditions, because it provides

better accuracy in energy prediction.

B. Simulation setting

In our simulations 500 nodes are randomly and uniformly

scattered in a square area of side 400m. The communication

range of the nodes is set to 40m. The sensing range is

30m. The node energy model is that of ECO nodes [20],

an ultra-compact expandable wireless sensor platform, which

has been used in combination with the Ambimax energy

harvesting platform [8]. Specifically, ECO node active power

consumption is 9mW, while its idle power consumption is

0.006mW. The supercapacitor leakage is modeled as specified

in [16], using a set of linear functions approximating the

empirical leakage curve. The charging/discharging efficiency

of the supercapacitor is set to 95%, i.e., ηc = ηd = 0.95.

Missions arrive in the network according to a Poisson arrival

process and are assigned to a location randomly and uniformly

selected in the deployment area. Mission duration is exponen-

tially distributed with an average mission duration of 1 hour.

The mission profit and demand also follow an exponential

distribution with average equal to 10 and 2, respectively. We

consider a mission satisfaction threshold Tsat = 50%, i.e., in

order for a mission to be successful, it must receive at least half

of its demand from the sensors allocated to it. The utility that

a sensor Ni can potentially offer to a mission Mj is defined as

a function of the distance Dij between the location lj of the

mission and the position of the node Ni. The network target

lifetime Tl has been varied between 30 and 180 days.

In our implementation of EN-MASSE, we set the time

threshold within which the energy cost has to be recovered for

the mission to be classified as recoverable equal to the mission

inter-arrival time times the probability that the new mission

falls in the node neighborhood. Thus, whenever a mission is

recoverable, bidding for it is not expected to compromise the

node capability to serve future missions.

The weighting factors wm associated with mission types are

set equal to 1 for battery required missions, 1.1 for capacitor

sustainable missions and 1.2 for recoverable missions.

EN-MASSE was compared to the following energy harvest-

ing unaware mission assignment schemes, proposed in [4]

by Johnson et al.: 1) Basic Scheme: Sensors propose to any

mission within their range. 2) Energy Aware Scheme: This

scheme does not use any classification of missions or mech-

anism to account for energy harvested energy. It simply uses

Equation 8 to make bidding decisions, applying a weighting

factor wm set to the ratio between the current residual energy

level and the maximum energy level. 3) Energy-Lifetime

Aware Scheme: This is similar to the Energy Aware Scheme,

but it also considers the target lifetime of the network when

making bidding decisions. It uses Equation 8 to make bidding

decisions with a weighting factor equal to the ratio between

the time a node can actively sense, given its residual energy

level and the target lifetime, and the expected occupancy time

of the node.

Because these schemes were not initially designed to use

nodes with energy harvesting capabilities, we modified them

in order to take both the capacitor and the battery into account

when computing the residual and the maximum energy level.

The nodes are also able to directly use the energy obtained

through harvesting, as well as storing it in the supercapacitor

for future use. All the bidding schemes we considered uses

the communication protocol described in [3], [4] for the

election of the leader and for exchanging information between

the mission leader and the nearby nodes; the communication

overhead of such a protocol is studied in [3] .

EN-MASSE, the Basic Scheme, the Energy Aware Scheme,

and the Energy-Lifetime Aware Scheme have been compared

in different scenarios, varying the target lifetime, the superca-

pacitor and battery size, the mission arrival rate, and the type of

sensors embedded in the nodes (thus the energy cost associated

to sensing). Here we first discuss results for a specific setting

of such parameters taken from a practical case, and then we

discuss how the relative performance of the four protocols

changes when we explore the whole parameter space.

C. Reference scenario

Our first set of experiments refer to a scenario where

node sensing cost is 3 mW (i.e., the power consumption of

a temperature sensor like Sensirion SHT11 or a dual-axis

accelerometer like ADXL202E). Each node is equipped with

two solar cells and with a 25F Maxwell supercapacitor [21],

which can store 90J of energy. Using this parameter setting,

the battery can sustain 32 hours of continuous monitoring,

while the energy contained in the fully-charged capacitor is

enough to perform almost 130 minutes of continuous sensing.

The target network lifetime is set to four months (shown as

a fine vertical line) and the simulations are run for 130 days.

The arrival rate of missions in the network is 22 missions per

hour. All other parameters are as detailed above.

We evaluate the performance of the different protocols with

respect to network profit over time (Fig. 1a), total profit at the
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Fig. 1. Simulation results for a sample scenario: (a) fraction of achieved
profits per time slot, (b) fraction of nodes with a residual battery greater than
zero, (c) total profit achieved at target lifetime (as a fraction of maximum)
and (d) total profit achieved per energy source (as a fraction of maximum).

network target lifetime (Fig. 1c) and in terms of fraction of

nodes that have energy left in their battery over time (Fig. 1b).

The first two metrics allow us to understand which bidding

scheme is more profitable and whether a given scheme is able

to provide a stable profit over the whole target lifetime or not.

The third metric deserves some discussion. Given the energy

harvesting capabilities of the nodes, a node with empty battery

is not considered dead, as it can execute missions using the

energy harvested from the environment. However, a node with

no residual battery suffers strongly from fluctuations of the

environmental source. It is not able to execute important mis-

sions if there are limited energy harvesting opportunities when

such missions come in. Therefore having a high percentage of

nodes operating only based on the harvesting subsystem may

compromise the capability of the network to execute critical

missions and degrade the network profit.

We observe that EN-MASSE leads to greatest profit and

is able to provide a high stable profit (70 − 80% of the

maximum achievable profit, defined as the profit that could

be achieved if all missions were fully served) till the target

network lifetime. The fact nodes wisely exploit their resources

to be able to provide the needed support to arriving missions is

confirmed by Fig. 1b, which shows that no node has depleted

its battery in the first 80 days. Then the fraction of nodes with

no energy in their battery starts increasing, reaching 60% at the

target network lifetime. The remaining nodes, as well as those

that can be sporadically charged by the harvesting subsystem,

are enough to serve arriving missions with very high profit.

This is the desirable behavior for the network. The bidding

scheme should not be too aggressive (as is the Basic Scheme)

as this would mean that all nodes fast deplete their battery,

by thus making the network profit significantly degrade over

time. On the other hand, the bidding scheme should not be

too conservative, as the energy left in the node batteries

at the target network lifetime is wasted. Fig. 1d shows the

sources from which EN-MASSE derives its increased profit.

Its profit from energy harvesting (both directly and via the

capacitor) is larger than the other two methods that are energy

aware. Further tests showed that EN-MASSE received more

than 40% higher profit than the other energy aware methods

from free, recoverable and sustainable missions, indicating its

direct consideration of the renewable energy source has large

benefits.

The Basic Scheme achieves high profit at the beginning of

the network operations. However, since sensors bid for any

mission within their range, node batteries start dying rapidly.

After 15 days of simulation more than half of the nodes have

depleted their batteries and the profit falls below 50% of the

maximum profit. After 30 days, less than the 1% of nodes in

the network have some residual energy stored in their batteries.

From here on, the profit achieved by the scheme shows a

high variability, because the capability to serve missions now

depends on the amount of harvested energy, which fluctuates

as the environmental source does. Overall, as shown in Fig. 1c,

which reports the total profit achieved by each scheme over

the target network lifetime, the total profit achieved by the

Basic Scheme is less than half the maximum and 33% lower

than the profit achieved by EN-MASSE.

In the Energy Aware Scheme, having no knowledge of

the target network lifetime, each node tries to conserve its

resources as long as possible. As can be seen in Fig. 1b, no

node has completely depleted its battery after 120 days of

simulation. However, to achieve this the scheme has to act

conservatively and to ignore many missions. This is why its

total profit falls below 60% of the maximum profit.

The Energy-Lifetime Aware Scheme tries to conserve node

resources in order to reach the target lifetime. Since it does

not exploit information on the harvesting subsystem or on the

expected harvested energy, it tends to be overly conservative.

This means that, in the first half of the target network lifetime,

the support offered to missions (thus the network profit) is

quite low. Then the scheme changes its behavior, becoming

more aggressive, and increasing its profit. Overall the total

profit achieved during the target network lifetime is quite low:
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Fig. 2. Simulation results: performance improvement for varying (a) target lifetime, (b) sensing cost, (c) capacitor size and (d) mission arrival rate.

55% the maximum and 25% lower than what achieved by

EN-MASSE.

D. Other scenarios: Impact of parameter variations

We investigate how varying key parameters affect the per-

formance of EN-MASSE and of the other considered mission

assignment schemes. While varying a parameter, the others

are set to the following values: the target lifetime is set to

120 days, the mission arrival rate is 22 missions per hour,

the sensing cost is 3mW and the capacitor size is 25F; all

other parameters are set as specified before. Due to space

constraints, for each scenario we do not show the behavior

of each scheme over time (as in Section V-C), but only

the performance improvement obtained by our EN-MASSE

scheme with respect to the other assignment schemes. Fig. 2

shows the ratio between the total profit achieved at target

lifetime by EN-MASSE and the profit achieved by the other

schemes. All curves have been obtained by averaging results

over 10 runs.

1) Target lifetime: As shown in Fig. 2a, the gap in profit

between EN-MASSE and the Energy Aware Scheme grows

with the target lifetime. The same is true for the Energy-

Lifetime Aware scheme. The reason is that for longer network

lifetimes a higher percentage of missions are enabled by

the harvested energy. This penalizes the Energy Aware and

Energy-Lifetime Aware schemes, which do not use exploit

information on future harvested energy and on the harvesting

subsystem features to make their bidding decisions. Such

schemes simply become more and more conservative, loosing

in terms of profit, as battery becomes a critical resource, which

can satisfy only a small percentage of missions.

The performance ratio of EN-MASSE over the Basic

Scheme goes up to 1.5 when the target lifetime is set to

4 months. It then slightly decreases for longer lifetimes.

EN-MASSE improved performance reflects the fact that our

scheme uses the battery energy to serve missions that have

a higher profit than those selected by Basic, and that it

selects more profitable missions also when they are enabled

by harvested energy. However, the gap in profit between

missions satisfied by EN-MASSE and the Basic Scheme is

less significant in case of energy harvesting operated missions.

Harvested energy must be spent within a limited time frame,

making it harder to achieve a high profit in this case. As the

target lifetime increases a larger percentage of missions are

sustained by energy harvesting, reducing the ratio between the

profits achieved by the two schemes.

2) Sensing cost: Fig. 2b shows how the performance of

EN-MASSE and the other schemes is impacted by the sen-

sors used and the associated energy consumption. A higher

energy consumption for sensing (sensing cost) degrades the

performance of the Energy-Aware Scheme. The ratio between

EN-MASSE and this scheme can be as high as 1.65 for a

sensing cost of 12mW. The reason is that when the sensing

cost is high nodes deplete a considerable percentage of their

battery energy quickly. In this case, the Energy-Aware Scheme

becomes very conservative accepting only missions with very

high profit. This would be a good strategy if nodes were

equipped only with the battery, as already noticed. When

harvested energy is a significant percentage of the overall

energy available to the node, being overly conservative in

accepting missions is a profit trap, since supercapacitor leakage

and finite buffer size reward a fast use of harvested energy. EN-

MASSE outperforms the Basic Schemes more significantly as

the sensing cost increases. The higher the sensing cost, the

higher the toll when making a wrong mission selection.

The performance improvement of EN-MASSE with respect

to the Energy-Lifetime Aware Scheme shows a decreasing

trend for increasing sensing costs, as this scheme has a finer

mechanism to control nodes eagerness to bid for missions.

Despite of that, EN-MASSE still outperforms the Energy-

Lifetime Aware Scheme, achieving a profit ratios between 1.35
(smaller sensing cost) and 1.2 (higher ones).

3) Capacitor size: As shown in Fig. 2c, the performance

improvement of EN-MASSE with respect to the Basic and

Energy Aware schemes has a decreasing trend for increasing

capacitor size. The Basic Scheme takes advantage of a bigger

capacitor. Basic usually suffers from a dumb management of

the supercapacitor energy buffer; when such buffer is larger

this effect is less important. The Energy Aware Scheme shows

a similar trend because, when making proposal decisions,

it takes into account the ratio between the current residual

energy (battery plus capacitor) and the maximum energy. The

bigger the capacitor, the more aggressive the scheme is when

harvested energy is available.

The performance improvement of EN-MASSE with respect

to the Energy-Lifetime Aware Scheme instead increases for

bigger capacitor sizes, demonstrating that our scheme better

exploits recharge opportunities. We also observe that the

relative performance of the assignment schemes does not show

a significant variation when using a 100F capacitor instead of
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a 50F capacitor, because of its higher leakage.

4) Mission arrival rate: Fig. 2d shows how the perfor-

mance of EN-MASSE varies with respect to the other schemes

for different mission arrival rates. The performance improve-

ment over the Energy Aware Scheme increases for higher

mission arrival rates up to a ratio of 1.3. In fact, increasing the

mission arrival rate has an effect similar to considering higher

sensing cost, as it leads to heavier network workload. Thus,

once again, the Energy-Aware Scheme becomes conservative

and accepts only missions with high profit. Since nodes using

the Basic Scheme propose to any mission within their range,

while EN-MASSE selects missions with higher profit, the gap

in profit between the two schemes grows up to a ratio of

1.65 as the mission arrival rate increases and more missions

arrive in the network. Finally, the performance improvement

over the Energy-Lifetime Aware Scheme slightly decreases for

increasing mission arrival rates, but it remains between a ratio

of 1.35 and 1.2.

E. Comparison with the optimal MIP solution

We compare our solution to the optimal mixed integer pro-

gramming (MIP) solution, obtained by solving a formulation

of the problem where the mission success threshold is set to 0
and energy buffers are ideal (no leakage, infinite buffer, charge

and discharge efficiency set to 1). Solving this model provides

an upper bound on the solution to our original formulation.

We consider a network with 25 nodes and a mission arrival

rate of 4 missions per hour. All other simulation parameters

(including the battery size) have been scaled accordingly.

Fig. 3 shows the performance of EN-MASSE with respect

to the upper bound provided by the optimal MIP solution for

different target lifetimes. The y-axis shows the total profit

obtained at target lifetime as a fraction of the maximum

profit. The gap between the two solutions is around 5% of the

maximum profit and it decreases for longer target lifetimes.

VI. CONCLUSIONS

In this paper we have presented an analytical model and

a distributed solution, EN-MASSE, for sensor-mission as-

signment in WSNs with energy harvesting. Our distributed

scheme, EN-MASSE, is shown to perform very closely to

the optimum provided by the analytical formulation, and to

outperform other mission assignment solutions. In particular,

by comparing mission assignment schemes in several different

scenarios we have demonstrated that traditional assignment

algorithms cannot harness the full potential provided by the

harvesting technology, which is instead taken into account

efficiently by our proposed scheme.
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