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Abstract—In this paper we propose the adoption of a self-
adaptable cross-layer and modular Software Defined Communi-
cation Stack (SDCS) for Underwater Wireless Sensor Networks.
The SDCS is a modular stack solution which is capable to run
different protocols at each layer of the network stack; a new
component, named policy engine, autonomously and adaptively,
as the operational conditions vary, selects the protocol of each
layer so as to optimize application scenario metrics of interest,
e.g., packet delivery ratio, end-to-end packet latency and energy
consumption. As a proof of concept, the paper presents the design
and performance evaluation of a policy engine to dynamically and
autonomously change the MAC protocol adopted in Underwater
Wireless Sensor Networks. The best MAC protocol is chosen
according to network conditions and application requirements,
without any a priori knowledge. We consider three different MAC
protocols running in the SDCS: CSMA, T-Lohi and DACAP that
represent the class of simple, intermediate and fully negotiated
MAC protocols, respectively. The performance of the three
protocols are first compared via simulations considering different
network conditions, such as traffic load and packet size. Then, we
evaluate the ability of our policy engine to dynamically estimate
the network changes and then to select accordingly the best
MAC protocol without any a priori knowledge. Results show the
effectiveness of our solution in that it is always able to quickly
find and choose the MAC protocol that optimizes a given metric
in a particular scenario by introducing a really limited overhead
in the network.

Index Terms—Underwater Sensor Networks, Adaptive pro-
tocols, Policy engine, Software Defined Communication Stack,
SUNSET.

I. INTRODUCTION

In recent years, Underwater Wireless Sensor Networks

(UWSNs) have emerged as the key enabler of a wide range

of applications ranging from port security and environmental

monitoring, to discovery and protection of marine archaeol-

ogy [1]. To meet the diverse requirements of an increasing

number of applications, many research efforts have focused

on designing, implementing and testing novel and increasingly

more flexible communication protocols (see [2] for a compre-

hensive survey). In this context, the challenge is represented by

the unique characteristics of the underwater environment, like

long propagation delays, low bandwidth, slow decaying signal

attenuation, and asymmetric links, among others. Underwater

signal propagation conditions depend on the specific scenario,

i.e., shallow and deep water, port, sea, ocean, lake, river, etc,

and also exhibit significant variability over time [3], [4]. These

challenges dictate the need to develop flexible solutions, which

dynamically adapt their operation to varying conditions and

demand, ensuring to achieve good performance over time.

As confirmed by in field experiments, up to date no existing

solution is capable to offer consistent behaviour in the different

operational scenarios: solutions which are considered best for

some particular scenarios, might perform poorly in others [5],

[6]. This is further exacerbated by the inherent non-stationarity

of the underwater acoustic channel. To address this issues,

recently adaptive protocols have started being proposed in

the literature [7], [8], [9], [10]. Nevertheless, their adaptation

capability appears to be limited in scope and effectiveness.

To overcome these limitations, in this paper we propose

to design the network protocols stack as a self-adaptive

system, capable to dynamically adapt to the different and

ever changing conditions. To this end, we propose to move

away from the monolithic communication stack to an open,

cross-layer and modular Software Defined Communication

Stack (SDCS) [11] that acts as a self adaptive system1. To

manage the self-adaptation at each layer of the SDCS, we

define a new component, called policy engine. The policy

engine dynamically adapts the protocol stack configuration -

by even possibly modifying the protocol of a given layer at run

time - according to dynamic changes in physical parameters,

network topology, acoustic noise sources, etc., in order to

optimize the performance with respect to the ever changing

scenario conditions.

As a proof of concept, in this paper we focus on a policy

engine which dynamically and autonomously adapts the node

MAC protocol. This is motivated by previous studies like

[6], [13], [14], in which the authors showed that different

MAC protocols are needed to provide good performance under

different network configurations (e.g., packet size), environ-

1We have implemented such approach in the SUNSET [12] enabled SDCS
to enable reliable, robust underwater assets communication and cooperation
within the FP7 SUNRISE project [11]. Patents have been filed on SUNRISE
SDCS.



mental conditions and traffic loads. So, for instance, if the

channel becomes highly asymmetric, better performance can

be expected by switching from handshaking-based solutions,

that require symmetric communications, to protocols which

do not rely on handshaking. However, we remark that the

proposed approach is general and can be used, possibly with

minor changes, at any layer of the SDCS.

Our contributions are as follows:

• We propose the adoption of a self-adaptable cross-layer

and modular Software Defined Communication Stack

(SDCS) [11] for optimizing Underwater Wireless Sensor

Networks. We design the SDCS as an autonomous system

with self-adaptability capability. Adaptation is enabled

by means of a new component, the policy engine. The

policy engine is designed according to the so called

MAPE-K loop [15], which represents a general archi-

tectural paradigm to build self-adaptable systems. Its be-

haviour is based on a feedback-control loop that Monitors

the environment, Analyzes data to detect changes, Plans

the reconfiguring actions and Executes them.

• We propose the use of reinforcement learning techniques

to determine the adaptation strategy - which corresponds

to the Plan phase of the MAPE-K loop of the policy

engine. In particular, we formulate the planning strategy

as an N -armed bandit problem, an effective strategy

belonging to the Reinforcement Learning family. Since

N -armed bandit problems do not require any a priori

knowledge about the environment, they are particularly

suitable for our setting, in which it is so difficult to

explicitly model all the underwater environment features

that affect network performance. Using an N -armed

bandit problem we are able to learn over time what is

the best protocol for each environment, network condition

and application requirements.

• We extend the SUNSET framework [12] to support a

full Software Defined Communication Stack (SDCS) to

provide for flexible choice of protocols and optimization

throughout the protocol stack. This innovative component

allows modular and cross-layer selection of pre-defined

protocols at all levels of the stack through the policy

engine module.

• We evaluate our approach for dynamic MAC protocol

selection through simulations by using SUNSET con-

nected to the Bellhop ray tracing tool [16] and consid-

ering single-hop networks composed by 6 nodes plus

the sink node. The SDCS implements three different

MAC protocols: the well-known CSMA protocol [17]; the

T-Lohi protocol [18], that uses a type of weak negotiation

to reserve the channel based on a short control packet

(TONE packet); the DACAP protocol [19], that uses an

RTS/CTS handshake to reserve the channel, enhanced with

very short WARNING packets. We evaluate the ability of

our policy engine to dynamically switch and to choose

the best MAC layer protocols according to the current

operating scenario. Our results show the effectiveness of

our solution. They show that the policy engine is always

able to learn the optimal protocol and to quickly react

to changes in the environment, under various underwater

conditions and application requirements.

The rest of this paper is organized as follows. We discuss

related work in Section II. An overview of the proposed

approach is described in Section III. The policy engine is val-

idated through an extensive performance evaluation presented

in Section IV. The conclusions are drawn in Section V.

II. RELATED WORK

In recent years, several MAC protocols have been proposed

for UWSNs due to the unique characteristics of the underwater

channel. The majority of these protocols are based on a

contention-based approach, e.g., [7], [8], [9], [17], [18], [19],

[20], [21], [22], [23], [24]. Only few solutions, such as [10],

[14], [25], [26], [27], [28], explore instead contention-free

techniques focusing on a Time Division Multiple Access

(TDMA) approach. However, TDMA based protocols require

a tight synchronization between network nodes that is not easy

to achieve in the underwater environment.

A coarse grain classification of contention-based protocols

is proposed in [6], in which the authors group existing solu-

tions into simple [17], [20], intermediate [9], [18], [20] and

fully [8], [19], [21], [22], [24] negotiated protocols. Simple

negotiated protocols does not use any kind of control message

before the actual data packet transmission. Conversely, a MAC

protocol is defined intermediate negotiated if a node sends a

control packet to reserve the channel before sending a data

packet. These protocols, though, are affected by the hidden

terminal problem. To overcome this problem, fully negotiated

solutions perform a full control packets handshaking between

the sender and the intended receiver(s), to acquire the channel

before each data packet transmission.

The well-known Carrier Sense Multiple Access

(CSMA) [17] protocol is an example of a simple negotiated

protocol. In [20] the authors propose the Aloha with Collision

Avoidance (Aloha-CA) protocol that exploits the typical long

propagation delay of underwater network. In particular, every

node overhearing data packets can estimate for how long the

channel will be busy and therefore schedule, accordingly, the

next data packet transmission.

Since the simple negotiated protocols do not reserve the

channel, they might suffer from high collisions rate. In [20]

authors present an intermediate negotiated protocol, termed

Aloha-AN. It is an extension of Aloha-CA where the nodes

send a small notification packet (NTF) to reserve the channel

before the actual data packet transmission. Similarly, in the

T-Lohi protocol [18] nodes contend for the channel sending a

wakeup tone. The TONE packets allows to speed up the reserva-

tion phase thus reducing the energy consumption. Moreover,

the number of tones received are also used to compute the

backoff time before a transmission attempt. Similarly, the

Adaptive Energy Reservation MAC protocol (AER-MAC) [9]

uses reservation packets to schedule the actual data packet

transmissions with neighboring nodes. Additionally, it adapts



the transmission power according to node distance, in order

to reduce packet collisions and energy consumption.

Since the use of the intermediate negotiated protocols do

not solve the hidden terminal problem, several fully negoti-

ated MAC solutions have been proposed in the past years.

In [22] the authors presents MACA-U that provides an adap-

tation of the terrestrial multiple-access collision avoidance

(MACA) protocol to the underwater acoustic channels. In

particular, the size of the control packets is increased to

compensate for the long propagation delay typical of the

underwater environment. More sophisticated handshake-based

solutions are the Distance-Aware Collision Avoidance Pro-

tocol (DACAP) [19] and the Bidirectional-Concurrent MAC

protocol (BiC-MAC) [21]. In particular, DACAP estimates

the distance among nearby nodes and uses this information

to improve the efficiency of the handshake and the channel

utilization. To overcome the spatio-temporal uncertainty [25]

problem, DACAP introduces a short WARNING control packet.

This packet is sent by a node that is waiting for a DATA

packet when it receives an RTS from another node. The node

that receives the WARNING packet aborts the transmission.

MACA-APT [8] is a fully negotiated MAC protocol which

exploits an adaptive packet train size transmission after every

successful handshake. The packet train size is selected ac-

cording to the network topology and the channel conditions.

Noise-aware MAC (NAMAC) [7] is another example of

adaptive MAC protocol. It uses the knowledge of the noise

generated by vessels passing close-by the network to choose

the best channel to use for communications.

Fully negotiated MAC protocols usually lead to higher

packet delivery ratio than other solutions, but at the price of

higher delays. Unfortunately the presence of varying asymmet-

ric links, that are typical in the UWSNs [29], can lead fully

negotiated MAC protocols to undergo dramatic performance

degradation. In general, there is no protocol able to fit all

network conditions and application requirements [14]. Even

adaptive solutions [7], [8], [9] offer a limited adaptivity, and

only to some environmental variables, e.g., propagation delay

between neighboring nodes, nodes distance, noise generated

by vessels and so on.

In this context, our design choice is radically different.

We propose a self-adaptive solution that is able to select the

best MAC protocol according to the application requirements

and the environmental conditions. While existing adaptive

solutions only modify some internal parameters, our solution

dynamically select the best MAC protocol among those avail-

able in the protocol stack.

III. POLICY ENGINE OVERVIEW

We consider a single-hop UWSN in which each node can

directly send data to the sink. The communication stack of

each node is designed as a Software Defined Communication

Stack (SDCS). The SDCS implements several MAC protocols

at the datalink layer and can be dynamically configured at

runtime, allowing to switch seamlessly from one protocol to

another. In particular, we consider an SDCS that is able to

self-adapt its configuration at the datalink layer, without any

human intervention. The self-adaptation of the datalink layer

is managed by a specific software module called policy engine.

Its goal is to allow the autonomous selection of the most

appropriate protocol solution in real-time according to changes

in the underwater environment, network topologies, network

load, or even to support different application requirements

(high packet delivery ratio, short delivery time, etc.).

From a high level perspective, the policy engine works

as follows. It receives as input the application requirements,

i.e., the performance metric that the MAC protocol has to

optimize. For each scenario, the network operator can choose

between different metrics to be improved, such as packet

delivery ratio (PDR), end-to-end latency, energy consumption,

or a proper combination of all of them. Then the policy

engine starts to execute a learning algorithm that learns over

time which is the MAC protocol that better optimizes the

given performance metric according to the environment and

network conditions. Since the learning starts without any a

priori knowledge about protocols behaviour, the environment

conditions are continuously monitored to detect changes that

require to switch from a MAC protocol to another.

We design the policy engine as a MAPE-K loop [15], a

general architectural paradigm to build self-adaptable systems.

It is based on a feedback-control loop that Monitors managed

system and the surrounding environment, Analyzes data to

detect changes, Plans the reconfiguring actions and Executes

them. There is also a Knowledge layer that support all the

phases (see Figure 1).

Monitor

Sensors

Execute

Actuators

Plan

Autonomic Manager

Managed system & Enviroment

Analyze

Knowledge

Figure 1: MAPE-K loop.

The MAPE-K loop allows to design the policy engine as

an intelligent agent that perceives the system and environ-

ment through “sensors” and uses the collected information to

compute the actions to be performed on the system itself, to

optimize some performance metrics.

In the context of UWSNs, the managed system is made of

the set of network nodes, while the environment is made of the

acoustic channels interconnecting them. The policy engine is

executed on the sink node in a centralized fashion, although

other network nodes actively participate to the monitor and



execute phases. Depending on the particular scenario, the

policy engine can also run on a master node/cluster head in

charge of managing a set of network nodes.

During the network operations, the policy engine iterates

through the four different phases:

• Monitor: the network is monitored on a continuous time

basis. The information required by the policy engine

which include network traffic and the links signal to noise

ratio is directly added to the packet header by network

nodes before the packet transmission and then they are

extracted by the sink upon packet reception.

• Analyze: the data collected by the monitor phase are taken

as input by the analyze phase. This phase is executed pe-

riodically every tanalyze minutes and performs statistical

computation on the raw data collected by the preceding

phase. It is based on the online adaptive cumulative

sum (Cusum) algorithm [30], an enhanced version of the

standard Cusum algorithm [31] specifically designed for

non-stationary and high variable scenarios. The main goal

of this phase is to determine whether the network or the

environment have changed. In such a case, it triggers the

plan phase.

• Plan: the plan phase computes the optimal MAC protocol

to be used in the network according to the performance

metrics (and/or their combination) of interest, namely,

the end-to-end latency, packet delivery ratio (PDR) and

energy per bit. In our policy engine, the Plan phase

is based on an N -armed bandit problem, a simple but

effective variant of the more general Reinforcement

Learning framework. It learns online, during network

operation, the optimal MAC protocol for each operating

scenario, without any a priori knowledge. The plan phase

is executed either when it is triggered by the analyze

phase, or periodically every tplan minutes. The latter

allows the learning algorithm to refine its knowledge

about the protocols behavior in each network condition,

and it corresponds to a round of the bandit problem.

• Execute: the execution phase implements the policy en-

gine plan. In our setting, it is the sink node, by means

of suitable control packets broadcast to the network,

which command the nodes to change the used MAC

protocol. This is implemented as to ensure seamless

transition from one protocol to another without network

interruption. Given the importance of this phase, the sink

node also implements a recovery and alignment procedure

to guarantee that all nodes received the control messages

to ensure consistent network behaviour by all the network

nodes.

IV. SIMULATION RESULTS

We evaluated the proposed police engine through extensive

simulation. In this section we report the simulation results

where the policy engine can switch between three MAC pro-

tocols, one for each class of contention-based MAC protocols:

CSMA for the class of simple negotiated MAC protocols,

T-Lohi for the intermediate negotiated and DACAP for the

class of fully negotiated MAC protocols. Our aim is to show

the ability of the policy engine to dynamically adapt the

data link layer protocol to the different network conditions.

CSMA, DACAP and T-Lohi protocols and the policy engine

have been implemented in SUNSET [12], connected to the

Bellhop ray tracing tool [16] via the WOSS interface [32].

Bellhop is used to compute acoustic path loss at a given

location, as well as the spatially-varying interference induced

by node transmissions. The historical environmental data input

to Bellhop refer to an area located off the coast of the

Palmaria island (La Spezia, Italy). Sound speed profiles (SSP),

bathymetry profiles and information on the type of bottom

sediments of the selected area are obtained from the World

Ocean Database,2 from the General Bathymetric Chart of the

Oceans (GEBCO)3 and from the National Geophysical Data

Center Deck41 data-base,4 respectively. In the following we

first describe the selected scenarios and protocol parameters

settings (Section IV-A). We then discuss the metrics that we

have investigated (Section IV-B). We finally report the results

of our simulation experiments in Section IV-C).

A. Simulation scenarios and settings

We consider a static single-hop UWSNs with 7 nodes (6

nodes plus the sink) randomly and uniformly placed in a

region with surface equal to 2Km2 at different depths, ranging

from 10 to 50m. We simulate a scenario considering an

environmental monitoring network where the deployed nodes

report to sink the sensed value every λ1 = 0.033 seconds on

average. Once a particular event is detected by the network

nodes, i.e., a sensed value is greater than a given threshold,

nodes start transmitting Constant Bit Rate (CBR) data at a

higher fixed sample rate of λ2 = 0.05 packets per second.

When the event expires, nodes continue to report data at

lower rate λ1 according to a Poisson process. The data packet

payload size (in bytes) varies in the set {128, 2000}. The

total size of a data packet is given by the payload plus the

headers added by the different layers. Besides, the size of

generated packets is not constant. The payload of each packet

depends on the type of information that the packet contains.

The physical header overhead changes according to the data

rate but is dominated by a 10ms synchronization preamble.

The CSMA, DACAP and T-Lohi MAC headers are 3B long

and contain the sender, the destination addresses and the

packet type. The header of the policy engine is added to

each data packet resulting in an additional overhead of 4B.

The size of RTS, CTS and WARNING control packets used by

DACAP is 6B, 6B and 3B respectively. The size of the TONE

used by T-Lohi is set to 3B. In our simulations, we assume

BPSK modulation. The carrier frequency is 24500kHz for a

bandwidth of 4000Hz. The transmission power is set to 3.3W.

The reception power consumption is set to 0.5W. Reception

and transmission powers are estimated based on the energy

consumption of existing acoustic modems.

2http://www.nodc.noaa.gov/OC5/WOA05/pr woa05.html
3http://www.gebco.net
4http://www.ngdc.noaa.gov/mgg/geology/deck41.html.



Finally, we set the policy engine analyze and plan phases

to be triggered every tanalyze = 60s and tplan = 1800s.

B. Simulation metrics

Effectiveness and costs of delivering data to the sink are

assessed through the investigation of the following metrics:

• Packet delivery ratio (PDR) at the sink, defined as the

ratio between the packets correctly received by the sink

and the packets generated by the nodes;

• End-to-end latency, defined as the time between the

packet generation and the time of its correct delivery at

the sink;

• Energy per bit, i.e., the energy consumed by the network

to correctly deliver a bit of data to the sink.

C. Simulation results

First, in a preliminary set of experiments, we evaluate

the performance of CSMA, T-Lohi and DACAP considering

different network conditions. Table I shows simulation results

according to the different packet sizes, 128B and 2000B and

traffic loads, λ1 = 0.033 and λ2 = 0.05. As we can see, none

of the protocol fits all the scenarios in that their performance

vary according to the considered metric, traffic load and packet

size. In particular, when the considered traffic load is λ1

and the packet size is 128B long, CSMA obtains the lowest

end-to-end latency and the lowest energy per bit consumption,

but at the toll of the lowest PDR. This is because CSMA

does not use control packets to access and reserve the channel

thus reducing the latency and the energy spent to deliver a

packet and, at the same time, increasing the probability of

packet collisions. Both T-Lohi and DACAP instead reserve

the channel through the use of short control packets that

allow to obtain the highest packet delivery ratio but at the

cost of higher latency and energy consumed with respect to

CSMA. In case of (higher) CBR traffic (λ2 = 0.05), all

the three protocols have the same PDR (100%) since the

traffic load is now constant rather than Poissonian, and the

packet generation rate is lower than the capacity. CSMA

is the protocol that shows the best performance by saving

more energy and by delivering faster the packets than T-Lohi

and DACAP since it does not reserve the channel before

the actual data packet transmission. When considering 2000B

as packet size, Poisson packet generation, and λ1 = 0.033

as traffic load, the probability of packet collisions become

higher since the transmission time is very high. Therefore

DACAP shows the best PDR by properly accessing the channel

through the use of CTS/RTS control packets. However, the

high introduced overhead results in high end-to-end latency

and energy consumption. T-Lohi instead shows the best trade-

off between delivered data packets and overhead introduced

in the network, thus allowing to obtain the lowest energy

consumption per bit and a quite high PDR. On the other

hand, CSMA delivers a lower number of data packets but

with lowest latency with respect to T-Lohi and DACAP. As

the traffic switches to CBR with rate λ2 = 0.05, DACAP

delivers less packets than the other protocols due to the high

CSMA

T-Lohi

DACAP

 0  20000  40000  60000  80000  100000

Time (sec)

 λ1   λ2  

λ1  - Traffic load 0.033 pkt/sec λ2  - Traffic load 0.05 pkt/secSelected MAC

Figure 2: Selected protocols when the policy engine optimizes

PDR according to two different traffic loads and fixed packet

size.
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 λ1   λ2  

λ1  - Traffic load 0.033 pkt/sec λ2  - Traffic load 0.05 pkt/secSelected MAC

Figure 3: Selected protocols when the policy engine optimizes

end-to-end latency according to two different traffic loads and

fixed packet size.

packet exchange which also induces high latencies. On the

other hand, CSMA shows the lowest latencies and CSMA and

T-Lohi deliver the highest number of packets. Even if the use

of the TONE packets in T-Lohi leads to a higher overhead than

CSMA, energy consumption of the two protocols is the same

due the small size of the TONE packets if compared to the

packet data size.

We now turn our attention to the policy engine performance.

In the first set of experiments, we vary at runtime the traf-

fic load after 50000 seconds of simulation, switching from

λ1 = 0.033 to λ2 = 0.05 pkt/sec while keeping the packet

size constant to 2000B. The experiment is repeated three times,

optimizing each time a different performance metric, i.e., PDR,

end-to-end latency and energy per bit. Figures 2, 3 and 4 show

the protocols selected by the policy engine over time (the

vertical bar represents the time instant in which the traffic load

changes). As we can see, the policy engine is always able to

find the optimal protocol and to adapt its behavior when traffic

load changes.

Figures 2, 3 and 4 give us also some useful insights

about how the learning algorithm works. At the beginning of

each simulation (or after the vertical bar) the policy engine

focuses mainly on exploration, to learn how each protocol

behaves in the current operating scenario. On the long run,

conversely, it exploits the acquired knowledge and focuses on

the best performing MAC protocol. Sometimes it also selects

suboptimal protocols to refine and improve its knowledge

about all available protocols. Note that only few protocol

evaluations are needed to identify the optimal protocol. In



128 Bytes 2000 Bytes

Metric λ1 = 0.033 λ2 = 0.05 λ1 = 0.033 λ2 = 0.05

CSMA T-Lohi DACAP CSMA T-Lohi DACAP CSMA T-Lohi DACAP CSMA T-Lohi DACAP

Packet delivery ratio 0.97 0.99 0.99 1 1 1 0.89 0.94 0.98 1 1 0.9

End-to-end latency (sec.) 1.9 4.5 6.5 1.9 3.9 5.5 29.1 36.1 42.9 16.8 18.9 112.9

Energy per bit (J/b · 10−3) 3.4 3.5 3.8 3.4 3.5 3.8 3.5 3.3 3.4 3.3 3.3 3.6

Table I: Simulation results with standalone protocols - 128 and 2000 Bytes.
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Time (sec)
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λ1  - Traffic load 0.033 pkt/sec λ2  - Traffic load 0.05 pkt/secSelected MAC

Figure 4: Selected protocols when the policy engine optimizes

energy per bit according to two different traffic loads and fixed

packet size.
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Figure 5: Probability that the policy engine has learnt the

optimal protocol as function of the number of rounds of the

N -armed bandit problem.

general, the performance of the learning algorithm heavily

depends on the relative performance of the available MAC

protocols. Basically, greater is this difference, easier is for the

policy engine to learn which is the best protocol for a given

scenario. This is somehow expected and perfectly shown by

our experimental results in Figure 5. In this figure we plot the

probability that the policy engine has learnt the optimal MAC

protocol, as function of the number of rounds of the N -armed

bandit problem (each curve starts only when all protocols have

been evaluated at least once). The blue line with cross points

corresponds to the optimization of the end-to-end latency, the

red dotted line with square points and the green dotted line

with round point correspond to the optimization of the PDR. In

the latter scenario, the SDCS does not implement the T-Lohi

protocol and the PDR is therefore optimized considering only

CSMA and DACAP. As we can see, very few rounds are

needed to reach an accuracy greater than 80% in all cases, but

if we focus on latency optimization a single evaluation of each

protocol is sufficient to achieve an accuracy close to 100%.

If we compare these results with those in Table I, we can

easily see the reason is that latencies are quite different among

protocols. The green dotted line with round point confirms

this trend: if we consider only DACAP and CSMA protocols

and we optimize the PDR, we can significantly improve the

learning performances.
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S1 - Packet Data Size 128 Bytes S2 - Packet Data Size 2000 BytesSelected MAC

Figure 6: Selected protocols when the policy engine optimizes

PDR according to two different packet sizes and fixed traffic

load.
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Figure 7: Selected protocols when the policy engine optimizes

end-to-end latency according to two different packet sizes and

fixed traffic load.

In the second set of experiments we vary at runtime the

packet size, switching from 128B to 2000B, and we keep

constant the traffic load to λ = 0.033. Again, the experiment

is repeated three times optimizing each time a different per-

formance metric. Results are shown in Figures 6, 7 and 8 (the

vertical bar represents the time instant in which the packet size

changes). As we can see, the policy engine is always able to

find the optimal protocol. Note that when the optimization

focuses on PDR and the packet size is 128B long (first part of

Figure 6), the policy engine uses almost uniformly all MAC
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Figure 8: Selected protocols when the policy engine optimizes

energy per bit according to two different packet sizes and fixed

traffic load.

protocols. This is expected, since in this operating scenario

all the considered protocols obtain the same performance.

However, when the packet size switches to 2000B, the policy

engine quickly reacts and reconfigures the MAC layer with

the optimal DACAP protocol. It is worth to be noted that if

the packet size switches again to 128B there is no need to

restart learning from scratch. Conversely, the policy engine

can leverage on the knowledge already acquired during the

first 45000 seconds of network operation. This is perfectly

shown in Figure 8, in which we change packet size multiple

times. Once a change in the network is detected, the policy

engine is able to directly switch to the optimal MAC protocol.
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Figure 9: Selected protocols when the application scenario

requires the optimization of different metrics at runtime ac-

cording to a fixed packet size and traffic load.

Finally, we investigate the policy engine behavior when

the application scenario requires the optimization of different

metrics at runtime. Therefore, we keep constant the traffic load

and the packet size to λ = 0.033 and 2000B and we change the

optimization metric every 50000 seconds. Results are shown

in Figure 9. This experiment confirms the effectiveness of the

proposed learning strategy. The policy engine is always able

to quickly react to changes and to select the optimal protocol

according to the considered metric.

V. CONCLUSION

In this paper we considered an UWSN in which the net-

work stack is implemented as a modular Software Defined

Communication Stack (SDCS). We proposed the design and

evaluation of a novel component of the SDCS, termed policy

engine, to dynamically and autonomously adapt each layer of

the network stack selecting the optimal protocol according to

network condition and application requirements. As a proof

of concept, we focused on a policy engine that adapts the

datalink layer selecting the optimal MAC protocol. Our work

is motivated by several studies that showed that different MAC

protocols are needed to face different network configurations,

environmental conditions and traffic loads. The policy engine

we proposed is based on a feedback control loop that monitors

the environment, analyzes data to detect changes, computes

the new MAC protocol and reconfigure the datalink layer.

The core of the policy engine is a learning algorithm that

is able to learn, without any a priori knowledge, which is the

best protocol for each operating scenario. Experimental results

validate our solution and show that the policy engine is always

able to learn the optimal MAC protocol and to quickly react

to changes in the network environment.
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